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Abstract
The influence of an interface on the energy level structure of hidden quantum
dots was studied. A self-consistent formalism was used for the calculation
of the linear response of a single hidden quantum dot and a dilute layer of
quantum dots in the presence of a static homogenous magnetic field. The
article studies how the shifts of energy levels caused by self-field interactions
(the so-called Lamb shifts) depend on the distance to the surface and magnetic
field. Numerical calculations show that the interaction between the quantum
dot and the surface leads to substantial Lamb shifts. These shifts can reach
relative values of more than 10%, and strongly decrease if the distance between
the quantum dot and the surface increases. The influence of a concentration
of quantum dots in a hidden layer was studied, and absorption spectra were
calculated. The numerical calculations show that the influence of interaction
between the quantum dots inside a dilute layer on the absorption profile is rather
weak.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nowadays there is great interest in the electromagnetic properties of nano-systems (systems
that contain particles with linear dimensions of about 1–100 nm). These systems have some
interesting electron and optical properties [1–4]. Some of the most fascinating nano-systems
are quantum dots (QDs). Owing to the electron confinement QDs represent the extreme case,
since the motion of electrons and holes is localized in all directions in these systems and
the electronic structure is discrete [5]. QDs are microstructures in which the extent of the
electronic wavefunction is comparable with the effective Bohr radius but still far larger than
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the size of single atoms. In contrast to the real atoms, in which the potential is determined by
the Coulomb interaction, the experiments performed on field-effect-confined QDs show that
good agreement between measurements and theory is achieved assuming the QD potential is
parabolic [6, 7]. Indeed, any physical potential will deviate from the strictly parabolic one,
especially near the edge of the potential. However, any smooth physical potential is expected
to be adequately described by a simple parabolic model. This is an obvious advantage because
in this case the Schrödinger equation can be solved relatively easily.

Very often QDs are situated close to the surface (see for example [8, 9]). The fabrication
and experimental studying of a single QD is a very difficult problem, and as a rule people deal
with QD arrays [10, 11]. Because the QD is not a point-like object, the local-field effects have
to be taken into account in order to describe the electrodynamics of such systems [12, 13]. The
local-field effects without magnetic field in a single QD in a homogeneous medium were studied
in [14, 15] and the influence of the surface was described in [16]. Recently, spin-dependent
phenomena have been studied with respect to the development of so-called spintronics [17, 18],
which is based on the effects caused by the injection of spin polarized carriers. Owing to this,
studies of nanostructures in the presence of magnetic field have become very active [19–21].
Then, in [21] the luminescence of InAs/Ga/As and InGaAs/GaAs QDs covered by 50 nm and
300 nm films was measured under a magnetic field up to 10 T. A small shift (�100µeV) of the
luminescence peak was found at the 10 T magnetic field. The present work is to a large extent
based on [22], in which the calculation of the effective polarizability for a particle situated in
a homogeneous medium with the presence of a magnetic field was made.

The purpose of this paper is to present a self-consistent formalism for the calculation of
the linear response (effective polarizability) of a single QD and a dilute layer of QDs under
the surface of a solid in the presence of a static homogenous magnetic field, and to make
the theoretical prediction of the absorption spectra. The interface in the system leads to the
appearance of an additional part of the local-field caused by the interaction between the particle
and the surface. This local-field and magnetic field induce some reconstruction of energy levels
of the QD system. It has been shown that interactions between the particle and the surface
determine the electrodynamical properties of the system [16]. A detailed description of the
local-field effect and a self-consistent formalism are given in review [12].

Thus, the influence of the surface and external magnetic field on the energy level structure
of a hidden quantum dot is the main problem of this work.

2. Energy level structure

Let the quantum dot be located under the surface of the solid and the external magnetic field
act on the system (see, figure 1(a)). As is well known, the lowest excited state level of the
conduction band of a single isotropic parabolic QD under the action of external magnetic field
splits into three states. If the magnetic field is taken to be along the z direction ( �B = B�ez) and
the circular gauge �A = B(−y/2, x/2, 0) is used, then the total Hamiltonian can be written as

H = − h̄2

2me
∇2 − i

2
h̄ωc

(
x
∂

∂y
− y

∂

∂x

)
+

1

2
meω

2
⊥(x

2 + y2) +
1

2
meω

2
0z2, (1)

where ω0 is the parabola frequency, ωc = eB/me is the so-called cyclotron frequency,
and ω⊥ = (ω2

0 + ω2
c/4)

1/2. Moreover, me and e denote the effective mass and the charge
of the electron, respectively. The Hamiltonian (equation (1)) can be solved easily enough
by the introduction of cylindrical coordinates (x = r⊥ cosϕ, y = r⊥ sin ϕ, z = r‖). The
wavefunctions corresponding to this Hamiltonian have the form
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Figure 1. A sketch of the system investigated with a single QD (a) and a layer of QDs (b) located
under a surface of a solid.

Here aλµν is the normalization constant, β‖ = (meω0/h̄)1/2, and β| = (meω⊥/h̄)1/2. In
equation (2), Hλ and L |µ|

ν are Hermite and Laguerre polynomials respectively. Following [22],
this work takes into consideration only the ground state |000〉 and next three lowest-lying states
|100〉, |01̄0〉, |010〉with energies relative to the ground state of E0 = h̄ω0, E− = h̄ω⊥−1/2h̄ωc,
and E+ = h̄ω⊥ + 1/2h̄ωc. For convenience, the states were relabelled according to
|0〉 = |000〉, |+〉 = |010〉, |−〉 = |01̄0〉 and |z〉 = |100〉. The transition current densities
for the transitions from |0〉 to |−〉, |+〉, |z〉 are denoted here as �j−

0 (
�R), �j +

0 (
�R), and �j z

0(
�R),

respectively. It is found that

�j z
0 (

�R) = eh̄√
2ime

β2
‖β

2
⊥

π3/2
exp(−β2

⊥ R2
⊥ − β2

‖ R2
‖)�ez, (3)
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0 (
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2ime

β‖β3
⊥

π3/2
exp(−β2

⊥ R2
⊥ − β2

‖ R2
‖)�e±. (4)

3. The effective polarizability

Further calculations are to a large extent based on [22]. However, for the convenience of readers
we present them here. The effective polarizability can be defined as the function connecting
the induced dipole momentum �p(ω) and the background field �E (0)(0) in the centre of the QD:

�p(ω) = ↔
α(ω) �E (0)(0). (5)

In general the dipole momentum can be calculated as

�p(ω) = i

ω

∫
V

�j( �R) d �R, (6)

where integration is over the volume V of the QD. The spatial current density �j( �R) is

�j( �R) =
∫

V
d3 R′ ↔σ ( �R, �R′) �E( �R′). (7)

The expression (6) can be written in the form

�p(ω) = i

ω

∫
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ω

∫
V

∫
V

↔
σ ( �R, �R′) �E d3 R′ d3 R. (8)

In equations (7) and (8),
↔
σ ( �R, �R′) is the nonlocal conductivity tensor, which at low temperature

is given by
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where n = {+,−, z}, and ν is the decay constant. This equation can be reduced to the form

↔
σ ( �R, �R′) = −i

h̄ω
[a+(ω) �j +

0 (
�R) �j−

0 (
�R′) + a−(ω) �j−

0 (
�R) �j +

0 (
�R′) + az(ω) �j z

0(
�R) �j z

0(
�R′)], (10)

with

a± = 2ω±
(ω + iν)2 − ω2±

, az = 2ω0

(ω + iν)2 − ω2
0

, ω± = ω⊥ ± 1

2
ωc. (11)

When combined, equations (8) and (10) yield

�p(ω) = 1

h̄ω2
[a+(ω) �J +

0 γ− + a−(ω) �J −
0 γ+ + az(ω) �J z

0 γz], (12)

where

�J n
0 =

∫
V

�j n
0 (

�R) d3 R and γn =
∫

V

�E( �R) �j n
0 (

�R) d3 R.

For the calculation of the unknown numbers γn, one needs to know the electrical field inside
the particle. For this purpose the self-consistent equation of Lippmann–Shwinger is used:

�E( �R) = �E (0)( �R)− i
µ0

h̄

∑
n

an

∫
V

d3 R′↔G( �R, �R′) �j n
0 (

�R′)
∫

V
d3 R �j n

0 (
�R) �E( �R). (13)

Here
↔
G( �R, �R′) is a Green function (the photon propagator) consisting of two parts [12, 13]

(in contrast to [22] where the Green function has only a direct part).
↔
G( �R, �R′) = ↔

D( �R, �R′) +
↔
I ( �R, �R′). (14)

Here
↔
D( �R, �R′) is the direct part of the Green function that corresponds to the infinite space,

and
↔
I ( �R, �R′) is the indirect part of the Green function that describes the interactions with the

surface. Because the linear dimension of the quantum dots and the distances between quantum
dots and the surface are much less than the wavelength of the external field, the so-called near-
field approximation [12] can be used. The direct part of the Green function in the near-field
approximation can be written as

↔
D( �R, �R′) = 1

4π

[
c2

ω2 · R3

↔
U − 3c2

ω2 · R3
�eR�eR

]
, (15)

with
↔
U being a unit dyadic, R = | �R − �R′| and �eR = �R/R. The indirect part of the photon

propagator in this approximation is
↔
I ( �R, �R′) = ↔

D( �R, �R′
M ) · �M, (16)

where

↔
M = −ε − 1

ε + 1

( 1 0 0
0 1 0
0 0 −1

)
(17)

and �R′
M = (x ′, y ′,−z′). In equation (17) ε means the dielectric constant of the medium in

which the quantum dots are embedded. Then the Lippmann–Shwinger equation (13) can be
reduced to a system of linear equations [15]

γm = γ 0
m −

∑
n

an Nm
n γn, (18)
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and the unknown numbers γn can be found. Here the near-field approximation is used:

γ 0
m =

∫
V

d3 R �E (0)( �R) �j m
0 (

�R) ∼=
∫

V
d3 R′ �j m

0 (
�R′) · �E (0)(0) ≡ �J m

0
�E (0)(0) (19)

Nm
n = µ0

h̄

∫ ∫
V

d3 R d3 R′ �j n
0 (

�R)↔G( �R, �R′) �j m
0 (

�R′). (20)

As the result the dipole momentum can be written in the form

�p(ω) = ↔
α(ω) �E (0)(0),

where

↔
α(ω) = − e2h̄

2iωm2
e

[
a+(ω)β

2
⊥

1 + a+(ω)N+−
�e+�e− +

a−(ω)β2
⊥

1 + a−(ω)N−
+

�e−�e+ +
az(ω)β

2
‖

1 + az(ω)Nzz
�ez �ez

]
. (21)

From equation (21) it is seen that Nm
n determines the shifts (the so-called Lamb shifts) and the

spontaneous decay rates of the energy levels [15]. Thus, N+− for ω = (E+ − E0)/h̄ determines
the shift of the |0〉 → |+〉 transition, N−

+ for ω = (E− − E0)/h̄ determines the shift of the
|0〉 → |−〉 transition and Nz

z for ω = (Ez − E0)/h̄ determines the shift of the |0〉 → |z〉
transition.

Let the dilute layer of QDs be hidden under the surface (figure 2(b)). We define the
dilute layer as a layer in which the distance between neighbouring particles is rather long.
This means that the electrodynamical properties of the particles are mainly formed by the
interaction between the particle and the surface. As was shown in previous works [23–25], for
an evenly distributed layer of quantum dots, the effective polarizability of the dilute layer of
QDs can be written in the form

↔
α array(ω, l) = [

↔
α(ω, l)−1 − n

↔
G(T )(�k, ω, l)]−1, (22)

where
↔
α(ω, l) is the effective polarizability of the single QD, n is the concentration of QDs

in the layer, l is the distance to the surface, and
↔
G(T )(�k, ω, l) is the total Green function of

two semi-spaces with a flat interface written in k–z representation [13] with z = z′ = l.
The total Green function describes all contributions (near-field, middle-field, and far-field) of
electrodynamical interactions. The calculation of the total Green function can be found in [26].

It is necessary to stress once more than the physical meaning of the influence of a surface
on the quantum dot energy characteristics is caused by strong inhomogeneities of the local
field near the interface. The stronger the inhomogeneities the larger the energy levels shifts.
In connection with this statement it is natural to expect that the decrease of the distance from
a particle to the interface will increase the local field effects; in other words, the Lamb value
shifts.

4. Numerical results and discussion

The numerical calculations were made for a GaAs quantum dot with h̄ω0 = 7.5 meV,
ν = 0.01ω0 and radius of 20 nm located under the surface in an AlGaAs medium. The
single-particle shifts can be calculated from equation (20). The calculation of dependences of
line shifts on the distance l between the QD and a surface shows that Lamb shifts decrease when
l increases. Moreover, the analytical evaluations provide the dependence on l as l−3. This
is a consequence of the near-field interaction between the QD and a surface when l is rather
small. It should be pointed out that the shifts are indeed perceptible. Namely, at l = 20 nm
the shifts
E are: for the |0〉 → |−〉 transition
E ≈ 2.75 meV; for the |0〉 → |z〉 transition

E ≈ 2.15 meV; for the |0〉 → |+〉 transition
E ≈ 1.75 meV. Increasing the distance l up to
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Figure 2. Single-particle shifts as a function of the magnetic field strength. Curve 1 corresponds
to the |0〉 → |−〉 transition; curve 2 corresponds to the |0〉 → |z〉 transition; curve 3 corresponds
to the |0〉 → |+〉 transition. The distance between the surface and the particle is l = 25 nm.
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Figure 3. The xx- and yy-components (
↔
α(ω)xx,yy) of the effective polarizability (arbitrary units)

as functions of frequency. The distances to the surface are l = 30 nm (a), l = 60 nm (b). The
magnetic field strength B = 1 T. Curve 1 indicates the imaginary part and curve 2 indicates the
real part. Vertical dashed lines correspond to the values E−

h̄ (left) and E+
h̄ (right).

40 nm leads to decreasing shifts. The shifts become less than 0.5 meV. Thus, the relative values
of the shifts can be larger than 10% for a QD located very close to the surface. The shifts, in
contrast, are less than 0.01% for the GaAs QD with the same parabolic frequency situated in a
homogeneous medium [22]. Therefore it is extremely important for the proper consideration
of a hidden QD and QD layers to keep in mind the possibility of the influence of the surface.
The influences of magnetic field on the Lamb shifts are illustrated in figure 2. Clearly the
transitions |0〉 → |−〉 and |0〉 → |+〉, i.e., those involving a change of the magnetic quantum
number, are mostly influenced by the magnetic field. The character of the dependences of
the shifts on the magnetic field is the same as in [22]. All the resonance conditions of the
system are determined by the components of the effective polarizability tensor. For a single
QD, spectral dependences can be calculated from (21), and numerical results are illustrated
in figures 3 and 4. As is seen, the resonance frequencies asymptotically approach the values
E−/h̄, E+/h̄ and E0/h̄ (compare figure 3(a) with 3(b) and 4(a) with 4(b)).
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Figure 4. The zz- component (
↔
α(ω)zz) of the effective polarizability (arbitrary units) as a function

of frequency. The distances to the surface are l = 30 nm (a), l = 60 nm (b). The magnetic field
strength B = 1 T. Curve 1 indicates the imaginary part and curve 2 indicates the real part. The
vertical dashed line corresponds to the value E0

h̄ .

Let us compare figures 3(a) and (b) which demonstrate the influence of the surface on
the Lamb shifts of the lines characterized by the transitions |0〉 → |±〉. The appreciable
shifts at distance l = 30 nm vanish at l = 60 nm. A similar effect is demonstrated for the
transition |0〉 → |z〉 (see figures 4(a) and (b)). This fact can be easily understood if we take into
consideration the near-field regime in which the electrodynamical interaction is quasi-static.
Then, the dependence of the single-particle Lamb shift on the distance between the QD and the
surface is proportional to l−3. It should be emphasized that a profile of the line corresponding
to the transition |0〉 → |−〉 at small distances l does not only shift but also split (there are three
maxima in figure 3(a)). This means that the local-field effect in surface-particle interaction
is most effectively disclosed for the transition characterized by the lowest energy. Indeed, a
decrease of the distance l leads to the closing together of the split peaks. Then, at l = 60 nm
(figure 3(b)) the splitting is not observed (two maxima).

The spectral dependence of the components for a dilute layer of QDs can be calculated

using equation (22). The spectral behavior of the imaginary parts of the
↔
αarray(ω, l) diagonal

components (figure 5) is the most interesting because in addition to the resonance conditions
they determine the absorption spectra of the layer (for absorption spectra of QDs see
also [27, 28]). As can be seen, for a concentration 1014 m−2, the relative change of the

magnitude of the absorption peaks of
↔
α array(ω, l)xx and

↔
α array(ω, l)yy is about 1%. In contrast,

the relative change of the absorption peak of
↔
α array(ω, l)zz is about 10%. So the lateral

interactions (between the dots) mostly influence the transitions |0〉 → |z〉. This can be
explained by the method of a mirror, which states that the interactions between two dipoles that
are normal to surface is larger than the interaction between two dipoles parallel to the surface.
The change of the components of the polarizability tensor and eventually the absorption spectra
profile is almost negligible for concentrations of QDs in the layer less than 1013 m−2. The
lateral interactions between molecules characterized by very strong polarizability, in contrast,
can lead to broadening and splitting of the line, as was shown earlier [23]. It is convenient to
consider the absorption spectra in terms of s- and p-polarized waves. For a p-polarized wave
the intensity of absorption
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Figure 5. The imaginary parts of the diagonal components (
↔
α array(ω)xx,yy (a),

↔
α array(ω)zz (b))

of the effective polarizability tensor of a QD array (arbitrary units) as functions of frequency for
different values of concentration. The distance to the surface l = 50 nm; the magnetic field
strength B = 1 T. Curve 1 corresponds to the concentration n = 0 m−2 (the case of a single QD);
curve 2 corresponds to the concentration n = 1013 m−2; curve 3 corresponds to the concentration
n = 1014 m−2. The vertical dashed lines indicate the values E−/h̄ and cE+/h̄ (a), and E0/h̄ (b).

I (ω, θ)p ∝ Im[
↔
αarray(ω)xx cos2(θ) +

↔
αarray(ω)zz sin2(θ)

+
↔
α array(ω)zx sin(θ) cos(θ) +

↔
α array(ω)xz sin(θ) cos(θ)]. (23)

For an s-polarized wave

I (ω, θ)s ∝ Im[
↔
αarray(ω)yy]. (24)

The absorption spectrum of a p-polarized wave has three resonance frequencies (figure 6(a)).
The absorption spectrum of an s-polarized wave, in contrast, has only two peaks (figure 6(b)),
due to the directions of the transition currents (3, 4). In addition, the spectra of a p-polarized
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Figure 6. The absorption spectra for p- (a) and s-polarized (b) waves. The distance to the surface
l = 50 nm; the magnetic field strength B = 1 T; concentration n = 1014 m−2. The vertical dashed
lines indicate the values E−/h̄, cE0/h̄ and E+/h̄ (a), and E−/h̄ and cE+/h̄ (b). In (a) the incidence
angle θ = π/3.

°

1

0.5

90
45

0 14
12

10
8

A
rb

. u
ni

t

Figure 7. The absorption spectra of a p-polarized wave as a function of the incidence angle θ
(in deg).

wave depend on the incidence angle of the wave (figure 7). A wave with angle π/2 induces
|0〉 → |z〉 transitions, while a wave with angle 0 induces |0〉 → |−〉 and |0〉 → |+〉 transitions.
The spectrum of an s-polarized wave does not depend on the incidence angle. Then, the
absorption of an s-polarized field is defined by transitions |0〉 → |±〉. But the absorption of a
p-polarized field depends on all considered transitions |0〉 → |±〉 and |0〉 → |z〉. As a result,
a standard set of the Zeeman triplet can be seen in figure 6(a).

Finally it should be noted that the parameters of the GaAs system QD in the AlGaAs
substrate used here (h̄ω0 = 7.5 meV, ν = 0.01ω0) were chosen here only for determination.
Using other parameters gives us obviously similar (at least qualitatively) results.

5. Summary

We applied a self-consistent approach to investigate the local-field effects in a single QD and a
dilute layer of QDs hidden under the surface in the presence of a magnetic field. The single QD
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is assumed to have parabolic and isotropic potential. For a single QD the effective polarizability
was calculated. The analysis demonstrates that only transitions involving a change of the
magnetic quantum number are significantly influenced by the magnetic field. It is shown that
in contrast to the case of a homogeneous medium, the shifts can be significant in the presence
of the surface. The effective polarizability was calculated for the dilute layer. Numerical
analysis of the influence of the lateral interactions on the absorption profile has shown that this
influence is rather weak. This means that lateral interactions can be neglected at concentrations
of QD layer lower than 1013 m−2. Then often the QD array can be treated as a single QD
× concentration. However, the predicted effects for the considered concentrations are within
experimental reach. It should be noted that the magnetic field could be effective for control of
the energy structure of the QD systems.

References

[1] Bastard G 1988 Wave Mechanics Applied to Semiconductor Heterostructures (New York: Halsted Press)
[2] Weisbuch C and Vinter B 1991 Quantum Semiconductor Structures: Fundamentals and Applications (Boston,

MA: Academic)
[3] Mitin V V, Kochelap V A and Stroscio M A 1999 Quantum Heterostructures (Cambridge: Cambridge University

Press)
[4] Vasko F T and Kuznetsov A V 1999 Electronic States and Optical Transitions in Semiconductor Heterostructures

(New York: Springer)
[5] Reimann S M and Manninen M 2002 Rev. Mod. Phys. 74 1283
[6] Demel T, Heitmann D, Grambow P and Ploog K 1990 Phys. Rev. Lett. 64 788
[7] Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
[8] Hess H F, Betzig E, Harris T D, Pfeifer L N and West K W 1994 Science 264 1740
[9] Obermüller C et al 1999 Appl. Phys. Lett. 74 3200

[10] Kops U, Blome P G, Wenderoth M, Ulbrich R G, Geng C and Scholz F 2000 Phys. Rev. B 61 1992
[11] Wang J Z, Wang Z M, Wang Z G, Chen Y H and Yang Z 2000 Phys. Rev. B 61 15614
[12] Keller O 1996 Phys. Rep. 268 85–262
[13] Greffet J-J and Carminatti R 1997 Prog. Surf. Sci. 56 133–237
[14] Keller O and Garm T 1994 Phys. Scr. T 54 115–8
[15] Keller O and Garm T 1995 Phys. Rev. B 52 4670
[16] Budkova N and Lozovski V 2000 Ukr. Fiz. Zh. 45 225–9

Budkova N and Lozovski V 2000 Ukr. J. Phys. 45 225–9 (Engl. Transl.)
[17] Tretyak O, Lvov V and Barabanov O 2002 Physical Basis of Spin Electronics (Kyiv: University Press)
[18] Ziese M and Thortron M J (ed) 2001 Spin Electronics (Berlin: Springer)
[19] Kolehmainen J, Reimann S M, Koskinen M and Manninen M 2000 Eur. J. Phys. B 13 731
[20] Burkard G, Engel H-A and Loss D 2000 Fortschr. Phys. 48 965
[21] Toda Y, Shinomori S, Suzuki K and Arakawa Y 1998 Solid-State Electron. 42 1083
[22] Keller O and Garm T 1996 J. Opt. Soc. Am. B 13 2121–8
[23] Baryakhtar I, Demidenko Yu, Kriuchenko S and Lozovski V 1995 Surf. Sci. 323 142
[24] Zhuravlev A, Lozovski V and Khudik B 1992 Ukr. Fiz. Zh. 37 1151
[25] Lozovski V 2001 Physica E 9 642
[26] Maradudin A and Mils D 1975 Phys. Rev. B 11 1392
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